Elin Ivarsson

A stratigraphical study of previous excavations at Bambandyanalo (K2)
Abstract

Ivarsson, E., 2007. *A stratigraphical study of previous excavations at Bambandyanalo (K2)*
C-uppsats i arkeologi, Institutionen för arkeologi och antik historia, Uppsala universitet.

This essay deals with the introduction of metallurgy in southern Africa, focusing on the Shashi-Limpopo valley in the extreme north of South Africa on the border to Zimbabwe. The main sites that this essay cover are those of Mapungubwe and Bambandyanalo, predecessors of the Great Zimbabwe culture and the earliest places in South Africa show traces of socio-political complexity. It has been suggested that Iron Age in southern Africa was introduced by a new people moving into the region, who brought the new Iron Age culture with them, and replaced prior cultures. This hypothesis however have lately been under questioning as it is based on old theoretical ideas, suggesting a very rapid change from the Stone Age into the Iron Age, and that new cultures replace old ones. New theories suggesting that the introduction of metallurgy in southern Africa was a result of the spread of the ideas rather than people, have become increasingly recognized lately. My aim with this paper is, by looking at the dispersal of Iron Age and Stone Age artefacts in the stratigraphy, to see whether it is a matter of an immediate change or a gradual adaptation into the Iron Age at the site of Bambandyanalo.

Keywords: Bambandyanalo, K2, Mapungubwe, South Africa, Iron Age, Metallurgy, Great Zimbabwe.

Elin.Ivarsson.7000@student.uu.se

Elin Ivarsson, Department of archaeology and ancient history, Uppsala University, Thunbergsvägen 3, Box 626, S-751 26 Uppsala, Sweden.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>1</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>2</td>
</tr>
<tr>
<td>2. Background</td>
<td>3</td>
</tr>
<tr>
<td>2.1. The Limpopo Valley Area</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1. Geography and environment</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2. Rise of an African civilization</td>
<td>6</td>
</tr>
<tr>
<td>2.2. The Archaeological Sites</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1. Bambandyanalo (K2)</td>
<td>9</td>
</tr>
<tr>
<td>2.2.2. Mapungubwe</td>
<td>10</td>
</tr>
<tr>
<td>3. Research of the Area</td>
<td>12</td>
</tr>
<tr>
<td>3.1. Early Excavations</td>
<td>12</td>
</tr>
<tr>
<td>3.1.1. Leo Fouché</td>
<td>13</td>
</tr>
<tr>
<td>3.1.2. G. A. Gardner</td>
<td>13</td>
</tr>
<tr>
<td>3.2. Later Research</td>
<td>13</td>
</tr>
<tr>
<td>3.3. Criticism of References</td>
<td>14</td>
</tr>
<tr>
<td>3.4. Conclusion</td>
<td>15</td>
</tr>
<tr>
<td>4. Approach to the Data</td>
<td>16</td>
</tr>
<tr>
<td>4.1. Archaeological Remains</td>
<td>16</td>
</tr>
<tr>
<td>4.1.1. Physical elements</td>
<td>16</td>
</tr>
<tr>
<td>4.1.2. Cultural elements</td>
<td>16</td>
</tr>
<tr>
<td>4.1.3. Cognitive elements</td>
<td>19</td>
</tr>
<tr>
<td>4.2. The Harris Matrix</td>
<td>20</td>
</tr>
<tr>
<td>4.3. Conclusion</td>
<td>21</td>
</tr>
<tr>
<td>5. Interpreting the Data</td>
<td>22</td>
</tr>
<tr>
<td>5.1. Summary of the Matrices</td>
<td>22</td>
</tr>
<tr>
<td>5.1.1. Pottery</td>
<td>22</td>
</tr>
<tr>
<td>5.1.2. Metal objects</td>
<td>23</td>
</tr>
<tr>
<td>5.1.3. Stone objects</td>
<td>24</td>
</tr>
<tr>
<td>5.1.4. Bone and Ivory objects</td>
<td>24</td>
</tr>
<tr>
<td>5.1.5. Figurines</td>
<td>25</td>
</tr>
<tr>
<td>5.1.6. Beads</td>
<td>25</td>
</tr>
<tr>
<td>5.2. Conclusion</td>
<td>26</td>
</tr>
<tr>
<td>6. Discussion and Conclusion</td>
<td>27</td>
</tr>
<tr>
<td>7. Summary</td>
<td>29</td>
</tr>
<tr>
<td>References</td>
<td>31</td>
</tr>
<tr>
<td>Appendix</td>
<td>34</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

When it comes to sub-Saharan African archaeology and history, the most famous monument must be that of Great Zimbabwe, a grand stone enclosure on the Zimbabwe plateau that is the largest masonry structure in Africa except for the pyramids (Sundström 1992:3). The culture, that the stone enclosure was a part of, had its heyday between the 11th and 15th century. It did not, however, rise up out of nothing. Several smaller societies of a similar kind have been found in southern Africa that predate Great Zimbabwe and played a part in its advance. One of the main settlements that has been said to have contributed to the Zimbabwe culture is that of Mapungubwe in South Africa. This is the area that I will work with in this c-paper, with a main focus on the Mapungubwe settlement of Bambandyanalo, also known as K2.

The Great Zimbabwe culture is probably the most well known Iron Age culture in the region, but by no means the first one. It has since long been suggested that the Iron Age in southern Africa was a result of the immigration of peoples who brought the ideas of metal development and a more permanent lifestyle with them. The reason behind this claim is that it has been suggested that one can find an immediate border between Stone Age and Iron Age artefacts in the archaeological stratigraphy. This would suggest that the previous Stone Age culture was replaced by a new metal using one.

In more recent research, however, this theory have been questioned. My aim with this c-paper is to further study the relevance of this claim, firstly by abridging the history of the area, and the research previously done. The purpose of this is to create a background, essential to understand the rest of the study. I will secondly summarize archaeological remains found at the excavations of Fouché and Gardner. I will do this both in text and with the help of a Harris Matrix scheme, the latter to get a better overview of the stratigraphy of the sites, so that one can get a picture of whether there is an immediate border between artefacts that one might associate with Stone Age cultures in comparison with artefacts one might mainly associate with the Iron Age.
2. BACKGROUND

2.1. The Limpopo valley area

When it comes to African archaeology, most is known about the cultures along the Mediterranean coastline. Knowledge of the history and pre-history of the sub-Saharan areas in southern Africa began with the reports of rock art found by Portuguese church officials in Mozambique in 1721 (Sinclair 2004:171). Later on, in 1871 as Carl Mauch first reported the ancient ruins of Great Zimbabwe, the archaeology concerning the southern African Iron Age came to a start (Hall 1987:103). Though this was the discovery that turned the world’s eyes on Zimbabwe, Carl Mauch was by far not the first to have found the ruins. In 1531 for example, a captain of the Portuguese garrison of Sofala, Vinçente Pegado reported the following:

Among the gold mines of the inland plains between the Limpopo and Zambezi rivers there is a fortress built of stones of marvellous size, and there appears to be no mortar joining them…. This edifice is almost surrounded by hills, upon which are others resembling it in the fashioning of stone and the absence of mortar, and one of them is a tower more then 12 fathoms (22 m) high. The natives of the country call these edifices Symbaoe, which according to their language signifies court (Wikipedia.com)

The initial theories surrounding the origin of the ruins were very influenced by the ideas of the time, and many of the early researches, including Mauch himself, refused to believe that the culture of Great Zimbabwe could be of African origin. Instead they believed that the ruins were built by the Phoenicians, and Mauch maintained the theory that they were the work of the queen of Sheba, as stories of such an origin had been told by the locals. However, later researchers believed that Mauch might have mistaken “Save” (the river) for “Sheba” (the queen) (Pikirayi 2001:9). The first scientific archaeological excavations, however, (Randall-McIver 1905; Caton-Thompson 1929) showed early on that the culture that had once occupied the ruins was in fact of African descent (Hall 1987:91).

The city of Great Zimbabwe is estimated to have been occupied between the 11th and 16th centuries, and based its economy largely on trade (Hall 1987:91). Trade was carried out both locally as well as internationally, with connections as far of as Europe, the Arabian Peninsula, India and China (Hall 1987:96).

Great Zimbabwe is by far the most famous historical site in southern Africa, though not the only one. The word Zimbabwe refer to a stone-enclosure and similar Zimbabwes are found around the Limpopo valley area that functioned as trade stations towards the inland or on the way to the Mozambican coast where the trading ports were situated. One of these coastal ports has been proved to have had several connections to the interior was Chibuene, on the Mozambican coast. Here, archaeologists believe, was one of the most important seats of the Indian Ocean trade network in southern Africa. Chibuene was occupied and involved in trade from the 8th century onwards (Pikirayi 2001:109).
Fig 1: Archaeological sites of the second millennium in the sub-Saharan area (Phillipson 1988:195)
When it comes to other settlements of great importance, one of the most known sites is that of Mapungubwe. According to Huffman, this was the civilization that initially influenced that of Great Zimbabwe. Apparently similarities in the material culture as well as the settlement pattern of Mapungubwe have been found in contemporary or later layers of Great Zimbabwe (Hall 1987:116). The Mapungubwe state has been divided into three different living areas, Bambandyanalo (K2) being the earliest of these. Like the later Mapungubwe settlements it was the trading station of its time in the region. The Mapungubwe sites lie in direct connection with the Limpopo River, which seems to have functioned as a trading route.

2.1.1. Geography and environment

![Vegetation of the northern Transvaal (Acocks 1975)](image)

The Limpopo valley area (The Shashi-Limpopo basin) covers mainly the lowlands around the Limpopo River. The Limpopo River rises near the city of Pretoria and joins in the Indian Ocean on the Mozambican coast (Manyanga 2006:41). The area covers four countries: South Africa, Botswana, Zimbabwe and Mozambique (Manyanga 2006:17). Just north of the lowland area rises the Zimbabwe plateau, which is situated between the Zambezi and Limpopo Rivers (Pikirayi 2001:5). The region of the Zimbabwe plateau is semi-arid but supports fertile soils ideal for
farming (O’Connor & Kiker 2004:51). The southern land around and to the south of the Limpopo River is more varied in character though, and extreme temperatures and droughts are common (Voight 1983:1). When it comes to the area surrounding Mapungubwe and Bambandyanalo (K2), some 200 km south of Great Zimbabwe, there is a mean annual rainfall of approximately 350 mm/year, which drastically effects the possibility of cultivation of the land, whose economies instead are largely based on cattle (Hall 1987:75).

It has, however, not always been as dry climate as that of today. At archaeological excavations at Mapungubwe, archaeologists have found carbonized seeds including sorghum and millets (Huffman 1996:57). These crops need a minimal annual rainfall of at least 500 mm/year to be supported, which in turn suggests that a higher annual rainfall must have been the norm during the heyday of Mapungubwe (Huffman 1996:55). This idea has also been supported by previous environmental research that shows that the region enjoyed what has been called “the medieval warm epoch” over the very time that Bambandyanalo (K2) and Mapungubwe were in their prime. This medieval warm epoch brought along more favourable climatic conditions and continued throughout the 10th to the 14th century (Huffman 1996:55; Manyanga 2006). As one of the first excavators, Captain Gardner, described the area: “The settlement must have had everything a primitive folk could desire: abundant water and, hence, good grazing, sheltered from the north and south winds” (Gardner, 1963:2).

Around AD 1300 the climate once again shifted, and the warm epoch turned into what is known as “the little ice age”. During this period the climate deteriorated and annual rainfall levels sunk. This new climatic condition continued until the mid 19th century. At about the same time, Mapungubwe was abandoned and instead Great Zimbabwe rose to greater prominence. The city of Great Zimbabwe, situated on the Zimbabwe plateau, enjoyed better climatic conditions due to its location by the southeast escarpment, for it received whatever rain that did fall in this region in these less favourable conditions (Huffman 1996:57). O’Connor and Kiker can further support this hypothesis of the abandonment of Mapungubwe state through their SAVANNA study of the area, where they came to the conclusion that it would have been extremely difficult to maintain an agro-pastoralist based economy during the climatic conditions brought on by “the little ice age” (O’Connor & Kiker 2004:62).

2.1.2. Rise of an African civilization

In contrast to the early Iron Age civilizations in Europe, northern Africa and the Middle East, that were all preceded by copper and bronze-using stages, the Iron Age in southern Africa seems to have taken over immediately after previous Stone Age phases. According to Summers, there are even some areas where one can find a development straight from the Palaeolithic living pattern to an Iron Age type of living, excluding even the Neolithic stage (Summers 1961:1). This immediate appearance of iron-age cultures supports the hypothesis suggesting that Iron Age development in southern Africa was due to the spread of people rather than ideas (Huffman 1982:134). Archaeologists have long since talked about the spread of a “cultural package” containing a new way of living including a cattle and crop based economy, a new way of building and arranging the settlements in a more permanent
fashion, and also a usage and knowledge of how to develop iron tools and cultural artefacts (Fagan 1964:342). The sudden change into a new living patterns that previously had not been found among other cultural groups inhabiting the region, has been suggested to have been brought on by a Bantu speaking group arriving from the north some 2000 years ago (Huffman 1996:54). Although this theory has generally been accepted, in more recent research it is questioned, and the theory of the spread of ideas rather then people is winning ground, as I will further explain in the Research of the area chapter.

The earliest Iron Age culture in the region has been identified through Zhizo pottery. Remains of the Zhizo material culture have, among other places, been found at the 9th century settlement of Schroda, which was the first place in the interior of southern Africa to have been involved in the Indian Ocean trade network (Huffman 1996:56). From 1000 AD and onwards a new culture replaced the Zhizo: the Leopard’s Kopje. This was the first culture to bring Iron Age elements further south, as far as the Shashi-Limpopo region (Huffman 1996:56). The new era brought by the Leopard’s Kopje peoples resulted in larger settlements, Bambandyanalo (K2) being one of them. Bambandyanalo (K2) was occupied for about two centuries before it was abandoned, the main hypothesis being that the population instead moved to Mapungubwe, just a kilometre away (Huffman 1996:56). Similarities between the later layers of Bambandyanalo (K2) and the lower layers at Mapungubwe, support this idea. After the shift of centre to Mapungubwe, there also occurred a change in the settlement patterns.

The later settlement of Mapungubwe contained two living areas: that of Mapungubwe Hill and that of the Southern Terrace. As the elite settled on the Hill, the majority of the population occupied the Southern Terrace below. At the Southern Terrace living area, people maintained the same spatial organisation as that of Bambandyanalo (K2), the so-called Central cattle pattern (Hereafter referred to as the CCP). This type of settlement organisation centred around cattle, which were also the base of the economy. At the Hill, though, there was a change into the Zimbabwe culture pattern (Hereafter referred to as the ZCP). This new type of organisation differed from the older CCP settlement pattern, in that it was based around wealth, and a wealth supported by trade rather than cattle, which were no longer the centre-point of the settlement organisation but were moved out of the living area (Wood 2005:7). This new pattern of state, class and spatial organisation was later exported to Great Zimbabwe, which eventually also took over as the main trading-station in the African inland (Beach 1998:55).

At Great Zimbabwe trade became increasingly important. In contrast to Mapungubwe, Great Zimbabwe traded with gold mined in the area, but the cattle based part of the economy still remained important (Huffman 1972:364). Not the least to support the growing population of Great Zimbabwe. At its heyday Great Zimbabwe might have held a population as large as 18 000 individuals. This is probably also what in the end became the city’s downfall for it seems as though the environment of the area, in the end, could not support the population (Manyanga 2006). At the same time, the state of Great Zimbabwe was challenged by the Khami and Mutapa states, which most likely contributed to the Great Zimbabwe decline (Beach 1998:60). Along with the fall of Great Zimbabwe, came the fall of many of
its satellite towns that were dependent on the Great Zimbabwe trade network, and the
Iron Age civilization of the Zimbabwe plateau and the Limpopo River slowly
diminished.

2.2. The archaeological sites

The site of Mapungubwe contains three main settlement areas: Bambandyanalo (K2),
Mapungubwe Hill and the Southern Terrace (Voight 1983:1). They are located on the
farm of Greefswald in the very north of South Africa, just by the international
borders to Botswana and Zimbabwe (Fouché 1935:1). These sites have become
increasingly important to the writing of South African history as archaeological
remains have made it clear that these were the first sites (so far known) in South
Africa to show socio-political complexity (Hopkins Wood 2005:1).

Mapungubwe Hill was first discovered in 1932 by farmer E. S. J. van Graan and four
fellow adventurers that were trekking the area. On the Hill they found gold objects,
walling, pots, potsherds, iron tools, glass beads etc. Van Graan reported these finds
to Professor Leo Fouché of the University of Pretoria who the following year
arranged the first excavation of the area (Fouché 1935:2; Voight 1983:5). As
Mapungubwe Hill was the first of the three sites to be discovered, this was also
where archaeologist Fouché and his team first concentrated their work (Fouché 1937;
Gardner 1963:1). From the report edited by Prof. Leo Fouché, one reads the
following description of the geographical features of the site, as was noted by one of Fouche’s co-workers, Dr L. J. Kriege:

The farm, “Greefswalde”, is situated in the central portion of a narrow strip of Bushveld sandstone, which extends for 50 miles along the Limpopo River in the extreme north of Transvaal. In this locality the sandstone has suffered considerable erosion and now forms rocky hills and ridges, separated by sand-covered valleys. (Fouché 1935:3)

He continues further in his report:

Mapungubwe Kop stands in the middle of a sandy basin, about half a mile across and surrounded by rocky ridges and hills up to about 200 ft. high. Unlike all the surrounding hills, which are rocky and tree-clad, its surface consists of sandy soil, covered with grass, and almost entirely devoid of trees. (Fouché 1935:3)

Mapungubwe Hill along with the Southern Terrace form the same settlement, with the Southern Terrace lying below the Hill, situated about 2.5 kilometres from the Limpopo river. The Hill is approximately 30 metres high and measures about 300 x 80 metres at its widest point (Fouché 1935:2; Voight 1983:3; Wood 2005:86). Just a kilometre south of Mapungubwe Hill lies Bambandyanalo (K2). This site contains an large mound, approximately 180 metres in diameter. The site of Bambandyanalo (K2) covers an area of about 5 hectares and is surrounded on three sides by sandstone cliffs (Wood 2005:86).

2.2.1. Bambandyanalo (K2)

Around 1000 AD, Leopard’s Kopje people moved into the Shashi-Limpopo region and began to inhabit the area of Bambandyanalo (K2). K2 refers to the more specific spot at Bambandyanalo where the vast majority of the finds were unearthed. In the early literature the archaeological site of Bambandyanalo is generally referred to as K2, but in more recent research the original name has been reintroduced. In this context, I will hereafter refer to the site solely using the name of Bambandyanalo. The site is situated just a few kilometres from the previous local centre of Schrøeda that began to decline at the same time that Bambandyanalo rose to power (Wood 2005:7). Over the 11th century Bambandyanalo maintained and increased its influence over the region and established itself as a hub in the trade connecting the African inland with the Indian Ocean (Hall 1987:83).

The site of Bambandyanalo is situated in prime elephant country, and through artefacts found at the site archaeologists have come to the conclusion that ivory was one of the main bases of the Bambandyanalo trade (Huffman 1982:142). It has been suggested through the overall findings that the area would have exported exotic African goods such as ivory and animal furs and in return received luxury items such as glass-beads and fine pottery. Remains of items such as these are found at virtually every level of the stratigraphy. It should be stressed, however, that trade did not only occur on an international basis, but also locally to surrounding settlements (Hall 1987:79).
The site of Bambandyanalo was organized according to the CCP which, as I have defined above, involves a central kraal flanked by a court midden (Wood 2005:7). The site was first excavated by Professor Leo Fouché and his team, but they focused most of their work on the neighbouring settlement of Mapungubwe Hill. The next set of excavations in the area took place between 1935-1940 and was led by G. A. Gardner, who concentrated on the other hand primarily on Bambandyanalo (Gardner 1963). Initially he began his excavating at the site of K1, but this site ended up being a “sandy mound of unconsolidated debris, washed down from the parent site of K2” (Gardner 1963:2). However, the massive amounts of debris found at the K1 site showed the great importance that domestic stock must have played in the economy of Bambandyanalo (Hall 1987:77).

About a century after Bambandyanalo had risen to power, it was abruptly abandoned for Mapungubwe Hill, just a kilometre away. When it comes to estimating the population of Bambandyanalo, as with any population estimation of historic sites, it is always a matter of a qualified guess rather then truth, but a population numbering around 2000 individuals has been suggested as a probable number (Wood 2005:7).

2.2.2. Mapungubwe

After the fall of Bambandyanalo, Mapungubwe rose to power and took over Bambandyanalo’s previous role as the main trading-station of the region. The settlement may have accommodated a population of around 5000 individuals during its heyday (Huffman 1986, 1996, 2000; Wood 2005:8), while the site covered some 50 hectares (Huffman 86a:291). It has been suggested that in the early days of Mapungubwe the main population of Bambandyanalo remained for some time at the Bambandyanalo settlement while the elite moved to Mapungubwe Hill. The main population later followed and then inhabited the Southern Terrace area of the Mapungubwe settlement. This would explain the use of the CCP settlement organisation, known from Bambandyanalo, at the Southern Terrace area.

As a parenthesis one can mention that in the later layers of the elite living-area of the Bambandyanalo site, one can the see the beginnings of a change into a new settlement pattern. The cattle had been moved out of the central area of the settlement to make space for the chief and his extended family (Wood 2005:7), which could be seen as an early development of the ZCP. This later settlement pattern showed a more refined spatial organisation, sprung out of wealth based on trade rather than cattle. The ZCP showed the earliest proof of a hierarchical society in South Africa, as the wealth based on trade brought greater riches and a more exclusive fortune due to the luxury goods in contrast to the previous cattle-based wealth. As one can see in the later layers of the elite inhabited area the cattle were removed from the living areas and instead the properties of the elite increased in size. The ZCP was the settlement organisation later used on Mapungubwe Hill, the living area exclusive to the elite on the Mapungubwe settlement (Huffman 1986, 1996, 2000; Chipunza 1994:52; Wood 2005:8).

Despite the changes in settlement organisation found at Mapungubwe Hill, in comparison to that at Bambandyanalo, archaeologists do not believe that this was due
to a new people taking over. Instead it has been suggested that this minor cultural change probably had to do with the changes in the settlement’s economy. This assumption is based on the new features of the material culture, which were very limited: only smaller changes in pottery. The main change, however, that came about along with the ZCP was to the layout of the settlement itself, and the division between the elite and the rest of the population. This could have evolved as a natural development, though, as great wealth had been achieved by the elite. As can be seen in the archaeological material, Mapungubwe was a rather larger settlement than Bambandyanalo, and its trade more developed. As the trade expanded, so too did the personal economy of those individuals involved with the trade, which would explain the shift to a more hierarchical society. Despite the growing trade, however, the agro-pastoralist based economy was still of great importance, particularly in the Southern Terrace living area, which remained with the cattle based economy (Hall 1987:78).

By the late 12th century, Mapungubwe was the capital of the region, ruling over several district centres and continuing the trade with the interior as well as the coast (Huffman 1982:145). As with Bambandyanalo, the major export of Mapungubwe was ivory and in return they received mainly ceramics and beads (Hall 1987:77).

In the beginning of the 13th century, however, Mapungubwe was hastily abandoned. Several ideas surrounding this subject have been presented, and one can assume that they are all of importance, and in combination contributed to the fall of Mapungubwe. The main hypothesis remains that the Mapungubwe culture did not in fact die out, but moved some 200 km north to the site of Great Zimbabwe. Several archaeological findings point in this direction, as the styles of various cultural artefacts found at Mapungubwe have later also been located at the site of Great Zimbabwe. One can also see in the archaeological material that the population of Great Zimbabwe expanded at the same time as it disappeared from Mapungubwe (Huffman 1982:146).

There are several reasons why the Mapungubwe population may have decided to leave the area, these being the main theories:

1. Great Zimbabwe was steadily growing as a trading-station of importance, one reason being that Great Zimbabwe had access to a greater variety of goods, with gold being the most important of these. Several mines, contemporary to the heyday of Great Zimbabwe, have been located around the area. Mapungubwe, on the other hand did not produce any gold. Gold artefacts have been found, but considering the low amounts and the absence of mines found in the area contemporary to the sites, one can quite safely suggest that no major trade with gold took place at Mapungubwe (Hall 1987:102).
2. Great Zimbabwe was also more favourably located for the Indian Ocean trade as it was situated closer to the coast than Mapungubwe (Huffman 1996:57).
3. As previously mentioned in the geography chapter: the lowland area around the south of the Limpopo river, where Mapungubwe and Bambandyanalo were situated, suffered considerably less favourable climatic conditions during the 13th century and onwards. The annual rainfall became so low that it must have become increasingly difficult to cultivate crops and this also
made the cattle suffer. Simultaneously Great Zimbabwe was not as badly hit by the climatic changes due to its placement on the Zimbabwe plateau, where the deterioration in rainfall was not as severe (Huffman 1996:57).

Mapungubwe was abandoned in 1220 AD (Huffman 1982:146), which marked the end of an era of major Iron Age settlements in the Shashi-Limpopo area in South Africa. Besides being the first place in South Africa to show proof of socio-political complexity, it has also become known for the beautiful artefacts found there. One of the most important among these finds is a set of gold rhinoceros which are the earliest gold remains found in South Africa (Huffman 1982:143).

3. RESEARCH OF THE AREA

3.1. Early excavations

For reasons discussed above, the early archaeological work done in the region focused on the Great Zimbabwe ruins (Seddon 1968:1). Later on satellite towns of Great Zimbabwe with similar culture became a new focal point of research, in order to help form a better idea of the Great Zimbabwe state and its connections. As the early research was executed in Zimbabwe and Mozambique, new sites of similar culture and of archaeological interest started to appear in South Africa and Botswana. Fortunately, the government realized the importance of these sites and contributed with aid to make it possible to explore the remains found (Fouché 1937).

When one studies the early excavations one must keep in mind that not only did they take place in the days of evolutionary and culture-centred theory (Olsen 2003:25pp; Barnard 2000), they also took place in a region of great segregation between various ethnic groups and in a time tainted by racist ideas and values. This in turn contributed to a very ethno-centred way of research in which origin and ethnic classification of samples were the main interests for investigation (Galloway 1959). Archaeological remains such as bone material and ceramics were of the greatest importance, in order to use the fragments to compare with current ethnic groups in the area, as the ethnographical revolution was at its prime (Eriksen 2000:33; Olsen 2003:36) but also to set up relative chronologies. As previously mentioned, and as is in some way still the case, archaeologists have struggled to prove and disprove the African origin of these early sites, though, as I will later mention, origin is no longer as much a focal point in the current research as it once was.
3.1.1. Leo Fouché

Professor Leo Fouché of the University of Pretoria was first notified about the finds located at the Mapungubwe site in 1933. Later the same year he arranged for the first excavations in order to get a general view of the archaeological potential of the site (Voight 1983:4). The main focus of this very first excavation of the site was naturally Mapungubwe Hill, as that was where the finds found by van Graan had been unearthed, but Fouché excavated at the Southern Terrace area and had some work done at the Bambandyanalo site (Voight 1983:4). Following years of 1934 and 1935 he sent out a team of experts (Jones, Schofield, van Tonder) to continue the work under his directions. Over this time they carried out excavations on the Hill and the Southern Terrace, as well as the Mahobe’s site. Some minor work was also done at Bambandyanalo (Fouché 1937; Voight 1983:4). The first volume of Mapungubwe, which covered the work of Fouché, was published already in 1937 (Fouché 1937; Fagan 1964:337; Manyanga 2006).

3.1.2. G. A. Gardner

The second series of excavations at Mapungubwe was supervised by G. A. Gardner who led the work for six long seasons between 1935 and 1940 with the assistance of van Tonder. These were a continuation of the excavations of Fouché. Gardner’s initial focal point was on Bambandyanalo, where he started out excavating the K1 area, just only to realize that it was of no major interest. Later on he found the site of K2 where he found the vast majority of his important finds. Since Gardner focused on the Bambandyanalo area, van Tonder excavated the Hill and the Southern Terrace. Later on also Gardner shifted his focal point to Mapungubwe Hill, where he excavated a large trench at the western end of the Hill (Gardner 1963; Fagan 1964:337; Voight 1983:4). The results of his work were published in Mapungubwe, volume II, although this was not in print until 1963 as the excavations were interrupted by World War II, when Gardner was called to serve in the armed forces (Voight 1983:4).

3.2. Later research

In 1940 the excavations supervised by Gardner at Mapungubwe were abruptly discontinued due to the second World War. In 1953, however, research was resumed, this time under the direction of Eloff, who mainly concentrated on the Southern Terrace area (Eloff & Meyer 1981; Wood 2005:86). In the late 1950’s and the early 1960’s the work that had been done at the Gardner excavation was finally published (Galloway 1959; Gardner 1963) and it became clear that there was still a lot of work to be done in the area. From the late 1960’s to the mid 1980’s excavations were executed by the University of Pretoria (Eloff 1968-1970, Meyer under the direction of Eloff 1971-1984) but they came to a halt as the political situation in the area deteriorated due to military activities (Voight 1983:5). Work on the site could eventually be resumed in 1991. From 1993 and onwards, the department of Anatomy at the University of Pretoria has joined the Archaeological department in the
excavating work to bring some further expertise to the interpretation of the skeletal remains (Wood 2005:86).

Until the 1970’s archaeologists mainly used conventional archaeological methods in their work, such as excavating, dating and creating chronologies (Beach 1998:47). In the 1980’s, new methods of archaeology, inspired by anthropological and ethnographical methods, became increasingly popular, such as cognitive studies. These methods became especially helpful in the case of Africa, where the possibility of combining these different disciplines benefited from the links current cultures and peoples have maintained with many of their past traditions. One can find, for instance, settlement patterns as well as artefacts in the current cultures similar to past ones.

In more recent times, archaeology and archaeological methods, both traditional and modern, have become more refined. A closer collaboration between archaeology and natural sciences, for instance, has resulted in various new methods that aid and enhance the accuracy of dating and the construction of exact chronologies (Beach 1998:47). As for current archaeological research made around the Greefswald area, Manyanga, for instance, has recently finished his thesis work on the changing ecological conditions of the Shashi-Limpopo valley over time (Manyanga 2006). Work has also been done with the focal point on beads, to trace trading routes (Wood 2005; Prisloo et al. 2005).

3.3. Criticism of references

Every archaeologist is somewhat influenced by the current ideas of the time surrounding his or hers work, and as archaeology is about interpreting data from an archaeological point of view, the same data can result in various outcomes. It is inevitable to be subjective on some level, for one cannot completely disregard the frames of reference that one subconsciously refers to. As it is impossible to achieve complete objectivity to the material, I can only try to be aware of my personal frame of reference.

One can see examples of how effected one can be by the ideas of the time just by looking at the reports from the early excavations. I might be criticized for using these old references in my work but the data used in my study, from these early excavations, is entirely artefactual, and will be put into a Harris Matrix scheme to clarify a picture of the stratigraphical distribution of artefacts. No previous ideas or interpretations surrounding the material are valid in such a scheme. I would also like to add that the techniques used at these early excavations were of a very modern type, much like current methods, I therefore feel quite confident using these sources despite their age.

The materials that I will be using from these early excavations are of a purely inventorial kind. I therefore see no major problem in using these sources since the archaeological remains on their own are unaffected by the contemporary archaeologists’ ideas, and they deserve to be reanalysed to separate them from the previous, somewhat questionable, work.
3.4. Conclusion

The early research of Iron Age cultures found in southern Africa was initially very focused around origin and ethnic classification. As this was a time inspired by ethnographical methods, local peoples in the area surrounding the sites were to some extent studied by the archaeologists already in the days of Fouché’s and Gardner’s excavations (Fouché 1937; Galloway 1959; Gardner 1963). In these days the views on various ethnic groups were very limited, and often seen out of an evolutionary theory. For instance the Khoe speaking people, and mainly the khoesan, were labelled hunter-gatherers and considered to be in a Palaeolithic stage, whereas the Bantu-speaking populations were considered to be in an Iron Age stage of development. This way of labelling ethnic groups easily becomes very problematic as it suggests that Khoesan peoples would never hold livestock or cultivate the earth, since they had been labelled hunter-gatherers (Lindholm 2006). It has, however, been proven in more recent research that Khoesan people adapt to various types of lifestyles depending on the premises given (Bousman 1998). Later research has also come to show that the isolation between ethnic groups in southern Africa that have been described in early ethnographic work is largely exaggerated (Denbow 1990:141). Much of the interaction between various groups, including those of Khoe and Bantu origin, has been documented in studies based on linguistic, ethnohistorical and archaeological inference (Bousman 1998:146; Denbow 1990:140).

One of the major issues when it comes to the early civilizations of southern Africa is the introduction of metallurgy. As previously mentioned, one of the most popular theories is that the Iron Age in southern Africa was introduced by Bantu speaking groups as a “cultural package”. Archaeologists have suggested that the immediate change from Stone Age cultures to Iron Age cultures leaving out the copper and bronze using stages supports this theory. Although, all that it really proves is that metallurgy was not developed independently within southern Africa but through external influence. One can see that this idea easily could have been a result of the previous way of thinking, e.g. evolutionary, where one culture would be replaced by another. In more recent times new theories concerning the spread of metallurgy have emerged questioning the previous ideas. Instead of the theory of metal being introduced by peoples, the new theory suggests that metallurgy was spread as an idea. Researchers mean that the base of the assumption that Iron Age came as a package is that there is an immediate border in the archaeological material between the Neolithic era and that of the Iron Age. Whether or not this is true is what I will further study in this paper. The site of Bambandyanalo is the earliest of the Mapungubwe sites, and is considered one of the first places in southern Africa where metallurgy was introduced. It therefore qualifies as an ideal settlement to study when it comes to the transition into an Iron Age culture.
4. APPROACH TO THE DATA

In this chapter I will go through the various types of material collected at the Mapungubwe sites. After summarizing the finds that have been unearthed at the sites, I will then explain my main method. That of using the Harris Matrix scheme to get a clear picture of the stratigraphy of the site.

4.1. Archaeological remains

I have divided the data collected into three major groups: physical elements covering the skeletal remains, cultural elements covering the artefacts and tools found, and finally the cognitive material collected mainly through ethnographical methods. I will explain the various elements further in the different chapters.

4.1.1. Physical elements

Among the physical elements I mainly consider the skeletal remains found at the various sites of the Mapungubwe area. The main skeletal remains found are predominantly from Bambandyanalo, where 97 skeletons have been unearthed. Most of these remains were found in fairly good condition, but in simple burials, in ash heaps, under the kraal or in the vicinity of huts (Henneberg 1994). Skeletal remains include both adults and children and the bodies have generally been found lying down on their sides in a flexed position (Fagan 1964:339).

At Mapungubwe, a total of 12 skeletons have been found. In contrast to Bambandyanalo, these were all found at a single burial site on the Hill. The material from these burials is not in as good condition as those of Bambandyanalo, though (Henneberg 1994).

One of the first to study the material found at the sites was Galloway, who participated in the Gardner excavation. Unfortunately, his work was not published until 1959, when it was already quite out of date. His focus was, as previously mentioned concerning the early excavations, on that of ethnological classification. His conclusion of the material he worked with was that a homogeneous people had inhabited sites, and, as he stated, “with no Negro features” (Galloway 1959).

4.1.2. Cultural elements

The majority of remains found at archaeological excavations belong to the category of cultural elements, and such is also the case concerning the excavations at the sites of Mapungubwe. Cultural elements such as pottery, tools, beads and metal remains are crucial for the interpretation of the past. Not only can they be used on their own with only the current site’s context in mind, but they can also be compared with elements of a similar kind at other sites. In this way they function as tools in the comparative work of peoples and societies to trace cultural relationships (Sinton Schoettler 1971:3)
The different types of pottery at the Mapungubwe sites were classified by Schofield during the excavations of Fouché. He arranged the various ceramic remains in the following manner:

Class M1: ‘a fine ware of which the best examples are beautifully decorated and burnished a deep black’. This pottery is more common on top of the Hill, and is typified by a preponderance of shallow bowls. In contrast to Class M2, there are fewer different types of vessel and their shapes are less elaborate. Scratched decoration is rare and the standard of finish much higher.

Class M2: ‘a coarse ware usually finished with brindled burnish, and of which the most common decoration was a line of diagonally patched loops. In many cases we found the lines of the decoration were engraved on the burnt pot. This class also shows a much greater variation of shape…..’ M2 pottery is the characteristic K2 pottery and is also found on the Hill.

Class M3: ‘all pottery of which there is reason to believe that it was imported from neighbouring tribes using a different pottery tradition’. Pottery found on The Hill which is considered to be imported, including polychrome sherds, comes under this heading. (Schofield in Fouché 1937; Fagan 1964:354)

In addition one can also add that the M2 ware found at the Mapungubwe sites has affinities with the wares of Leopard’s Kopje phase II ceramics, whereas the Leopard’s Kopje phase III, is similar to that of Zimbabwe class 3 and the later Mapungubwe wares that are mainly found on Mapungubwe Hill (Sinton Schoettler 1971:12).

Fig 4: M2 Pottery (Schofield 1963, Fagan 1964)
Bone and ivory tools are quite naturally frequent at the Greifswald sites as the area is rich in elephant populations. It has also been determined through the archaeological material that trade with ivory was one of the main bases of the Mapungubwe economy (Hall 1987:80). Among the objects found are raw material, tools such as needles and jewellery (Gardner 1963). Bone and ivory remains or artefacts have been located in great amounts at all the sites of Mapungubwe: as E. Voight noted: “the sheer quantity of finely finished products is unique in southern Africa” (Voight 1983; Hall 1987:81).

Beads are one of the categories of archaeological material that can truly unveil cultural relationships and connections between societies. As they are often considered a luxury good in most cultures, and as the majority of cultures have their own specific style of beads due to the local fashion and materials, beads can quite easily be used to track trading connections and routes. As the style of beads also has a tendency to change over time, beads can also contribute greatly to dating these trading connections, and for the setting of chronologies (Wood 2005).

Metal objects of the Mapungubwe sites have been unearthed in various forms: as jewellery, tools or as raw material. No major remains of raw material have been
unearthed, though, that would suggest any production of a greater scale at the sites (Fouché 1937; Gardner 1963). The metal remains are mainly found in the higher levels of the stratigraphy at the sites, and the sites seem to have similar stratigraphic distribution of metal objects as with a number of contemporary sites further north (Fagan 1964:344).

4.1.3. Cognitive elements

Cultural anthropology and archaeology have since the ethnographical revolution been working very close together. Despite this, many archaeologists have shown scepticism to using anthropological methods in archaeological work. Although it should be stressed that anthropological, and on some levels also ethnographical, practices should be used as complements to the traditional archaeological methodology. As Huffman states in his article *Cognitive studies of the iron-age in Southern Africa*:

Most misgivings over cognitive archaeology are based on the false premise that valid interpretations of the past must stem directly from artefacts. This premise, derived from narrow inductivism, leads to the mistaken belief that the material nature of an artefact limits the kind of interpretations that is possible. Because artefacts are material, inductivist interpretations are limited to physical manufacture and use. ‘Archaeologists cannot dig up ideology’, some say with this reasoning, ‘they can only dig up technology and economy’ (Huffman 1986b:84)

Cognitive studies can contain several different methods. One can study current peoples through cultural-anthropological methods, or with the use of ethnographical methods (that have somewhat been replaced by the anthropological ways of research, as they seem to contribute to greater accuracy, but on the other hand involve more time and work). One can also study current villages, compare the socio-political order with that of archaeological sites, or learn from oral traditions. These are just a few ways of collecting data that could aid the work of creating as complete a picture as possible of the past (Huffman 1986b; Beach 1998; Eriksen 2000).

Oral traditions as a complement to archaeological research have always been a criticized as a means of collecting data (Sinton Schoettler 1971:3) mostly because of the difficulty of proving the origin and accuracy of these tales. Many suggest that the recollections become tainted by time and therefore lose their cognitive-archaeological value. I would like to suggest that this is both true and false. One must remember that there is a basic difference between cultures that still hold oral traditions in high regard as opposed to many western cultures that have long since replaced oral traditions with written ones. In western cultures one can see how easily a story changes over time, which is what the idea of the lack of accuracy is based on. The difference is that cultures that keep their story within an oral tradition have established rules that are made simply to ensure that the stories will suffer as little contamination as possible. One way, for instance, is the use of verse. Verse can be used in many ways that are not necessarily obvious to the listener. Ancient texts of the classical world and Mesopotamia have a long history of oral tradition before they were written down. The events of *The Iliad* for example took place centuries before
Homer wrote them down and put them into print. The stories of the Homeric epics were told in the verse-type hexameter that kept the original story very much the same over the centuries. If one wanted to add a little extra to the story, the verse would change and the mistake would not go unnoticed. Most oral traditions have some way of keeping the narratives intact, and one also has to remember that it is a matter of tradition and that it is generally of great interest to keep these ancient stories as true to the original as possible. Therefore I would like to argue that the idea of the lack of accuracy might be exaggerated in cases concerning cultures that still practice an oral tradition.

When it comes to the sites of Mapungubwe, the reason archaeologists discovered the place was because of the stories told of it. Van Graan and his companions, who first reported the site after unearthing several finds, first heard about the place through the locals who described it as a place of great danger and great treasures. It was a sacred place to the Great Ones among their ancestors, and they refused to come along to the site since climbing the Hill to them meant certain death (Fouché 1937:1). This in turn inspired the adventurers and led them to the earliest South African Iron Age culture found to date.

However, the study that I am making in this paper will mainly focus on the cultural elements of the site of Bambandyanalo, as that is what I will use for the completion of the Harris Matrix, as well as the charts, which will show the relationships between artefacts that I will later analyse. Despite this, analyses can be inspired by cognitive ideas. Through the matrix one can for instance compare contemporary sites, and draw conclusions of origin based on their organisation and structure by comparing them with current sites of peoples with similar socio-political systems. By studying these current peoples one can also find out more about what life might once have been like.

4.2. The Harris Matrix

The Harris Matrix is a concept that is based on the idea of showing the stratigraphical relationships between various layers of an excavated area (Radimilahy 1998:86). It is based on Harris’s laws of stratigraphy, which might seem obvious but are as follows:

The Law of Superposition: in a series of layers and interfacial features, as originally created, the upper units of stratification are younger and the lower are older, for each must have been deposited on, or created by the removal of, a pre-existing mass of archaeological stratification. (Harris, 1979:112)

The Law of Original Horizontality: any archaeological layer deposited in an unconsolidated form will tend towards a horizontal disposition. Strata which are found with tilted surfaces were so originally deposited, or lie in conformity with the contours of a pre-existing basin of deposition. (Harris, 1979:112)

The Law of Original Continuity: any archaeological deposit, as originally laid down, will be bounded by a basin of deposition, or will thin down to a feather-edge. Therefore, if any edge of the deposit is exposed in a vertical plane view, a part of its original extent must
have been removed by excavation or erosion: its continuity must be sought, or its absence explained. (Harris, 1979:112)

The Law of Stratigraphical Succession: any given unit of archaeological stratification takes its place in the stratigraphic sequence of a site from its position between the undermost of all units which lie above it and the uppermost of all those units which lie below it and with which it has physical contact, all other superpositional relationships being regarded as redundant. (Harris, 1979:113)

The traditional way of using the Harris Matrix is by placing the different stratigraphic layers into the scheme, as well as the geological features and archaeological remains such as remains of walls. Archaeological artefacts are also more or less put into the scheme – which artefacts that are marked out in the matrices depends on what is vital for the study in question. I will, however, use the Harris Matrix scheme in a somewhat different manner. My intention with this study is not to research the geological stratigraphy but that of artefacts. Therefore I have placed artefacts of importance found at excavations into a Harris Matrix, using the traditional method but excluding the geological features such as soil types, as they are not vital in this limited study. This is to show the artefacts relation to one another and to get a clear picture of their appearance in the stratigraphic sequence.

4.3. Conclusion

During the early excavations made at the Mapungubwe sites, several types of archaeological material were collected: physical, cultural and cognitive. All of these types of archaeological material help form as accurate a picture as possible of the past. As my intention with this particular study is to examine the introduction of
metallurgy, the material that I will be working with will be of the cultural kind. With the help of a modified Harris Matrix along with charts I will try to show how metal, and other cultural elements that one associate with a more complex culture, was introduced at the site of Bambandyanalo. I will also look at how stone objects, and cultural objects associated with earlier stages of development, stand ground as the new techniques advance.

5. INTERPRETING THE DATA

5.1. Summary of the matrices

I refer to the Appendix for the matrices.

The matrices found in the appendix, covers block one to five of the Bambandyanalo settlement. These blocks were excavated by Gardner between 1936 and 1939 (Gardner 1963). The reason for my focus on Bambandyanalo and not Mapungubwe is simply because Bambandyanalo is an earlier settlement, and it will therefore be easier to observe the progression of the material nature of the site. This is to give a more accurate picture of artefacts associated with Palaeolithic and Neolithic stages in comparison with artefacts associated with Iron Age stages.

The objects of the site have been divided into six different categories: Pottery, Metal, Stone objects, Bone/Ivory objects, Figurines and Beads. I will here discuss the result of the stratigraphy category by category and finalize with some comparisons.

I would like to add that just looking at the charts would not give as clear a picture as the matrices, of the stratigraphy. This as the lower levels generally are not as thoroughly excavated as the higher ones, which might be mistaken in the charts for that the elements in question are less frequent, however, the charts in combination with the matrices complement each other in bringing about a more complete picture as they contain the numbers, and in some cases the number of various types, of artefacts.

5.1.1. Pottery

Pottery is found on every level and to a great extent, which is of no surprise. Rough pottery with little or no decoration is found on every level, low as well as the top ones, and is probably the type that is most frequently represented. The pottery, described by Gardner as decorated, is found within the three top layers with just two exceptions of findings in the fourth layer, although it should be mentioned that a bowl with triangles was found as low as the seventh layer. Lugged pottery is also found on most levels, low as well as high.
5.1.2. Metal objects

Metal remains or objects are most frequently represented in the two to three top layers, with occasional exceptions turning up as low as the seventh layer, as is clear by the matrices. However, the main quantity of metal objects are found in the two top layers (One exception being block 3, where a high number of metal remains have been unearthed in the third layer as well).
5.1.3. Stone objects

Stone objects are represented on every level and quite equally represented on all these layers. Looking at the inventory I cannot find any major difference in the type of stone objects that are represented in the various layers. It seems at large to be a very equal distribution of all artefacts and tools and no specification in the various layers.

<table>
<thead>
<tr>
<th>Level</th>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block 4</th>
<th>Block 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Level 2</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Level 3</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Level 4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Level 5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Level 6</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Level 7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2*</td>
</tr>
</tbody>
</table>

Chart 4: Quantities of metal remains found in the various blocks and on the various levels.

5.1.4. Bone and Ivory objects

Most objects within this category are ivory artefacts such as needles and other tools, only a small amount of remains found in these blocks are actually human remains. That said, looking at the matrices one can see that bone and ivory objects are represented throughout the layers, although one can also see that there is a somewhat greater representation of bone and ivory material in the middle and lower layers.

<table>
<thead>
<tr>
<th>Level</th>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block 4</th>
<th>Block 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Level 2</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Level 3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Level 4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Level 5</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Level 6</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Level 7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Chart 5: Quantities of stone object found in the various blocks and on the various levels.
5.1.5. **Figurines**

Figurines are mainly found in the second layer and are not at all represented below the fourth. The main representation of figurines is found in the two top layers though.

<table>
<thead>
<tr>
<th>Level</th>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block 4</th>
<th>Block 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Level 2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Level 3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Level 4</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>8*</td>
</tr>
<tr>
<td>Level 5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Level 6</td>
<td>0</td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Level 7</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Chart 6: Quantities of bone and ivory found in the various blocks and on the various levels.

5.1.6. **Beads**

Beads are found at practically every level and with quite varied representation. Going through the inventory lists one can also see that the greatest representation of various types of beads occurs in the second and third layers. Below the third layer, the otherwise common G.R light type of bead is not found. The G.R dark type is represented in all but the seventh layer, but one must stress that the seventh layer was only excavated within two of the five blocks.

<table>
<thead>
<tr>
<th>Level</th>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block 4</th>
<th>Block 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Level 2</td>
<td>7</td>
<td>8</td>
<td>12</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Level 3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Level 4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Level 5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Level 6</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Level 7</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Chart 7: Quantities of figurines found in the various blocks and on the various levels.

Chart 8: Quantities of beads found in the various blocks and on the various levels.
<table>
<thead>
<tr>
<th>Level</th>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block 4</th>
<th>Block 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Level 2</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Level 3</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Level 4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Level 5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Level 6</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Level 7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* Indicates that the number is somewhat uncertain as the inventory lists does not state any specific number regarding the quantity of items in some cases. The number shown is the smallest number possible of items.

5.2. Conclusion

It is interesting to see how stone objects, for instance, are equally represented on all levels of the stratigraphy. This can be interpreted as indicating that there is no decline in use. In contrast, metal is mainly represented in the two or three top layers, although, metal remains are found even on the lowest levels but not at all to the same extent as they are in the upper ones. In the lower levels it is more a matter of occasional occurrence. This suggests that the introduction of metals did not result in the abandonment of stone technology.

As for pottery, rough and lugged pottery is found on every level, whereas the finely decorated ones are mainly found on the top half of the stratigraphy. When it comes to objects that are conventionally used as indicators for the development of social complexity, for example luxury items, figurines are not found below the fourth layer; beads on the other hand are found on virtually every level, although the great variety of beads are, like figurines, only found on the upper half of the stratigraphy.

It is quite clear looking at these stratigraphic sequences that artefacts associated with the Iron Age receive a greater representation the further up you move in the stratigraphy. What is of interest, though, is that the objects associated with palaeo- and Neolithic stages, such as lugged and rough pottery as well as stone objects, do not decline in frequency in the higher, more recent layers.

I cannot through these stratigraphic sequences say that there is an immediate border between Stone Age and Iron Age objects. I would think that, had one culture been completely replaced, then there would definitely have been a decline in the objects that are most associated with the previous culture. This, however, is not case. The finds associated with Stone Age stages do not suffer any decline whatsoever. Whether that means that the introduction of Iron Age elements was a result of the spread of ideas rather than peoples, or whether Palaeolithic, Neolithic and Iron Age cultures were living side by side at the settlement I cannot tell. I would also like to
stress the very limited amount of data studied, but it is in any case, interesting to see the importance the early-type elements had, even as the site was at its prime and considered the main trading station of the time in the area, with contacts as far as India and China.

6. DISCUSSION AND CONCLUSION

Two main theories concerning the introduction of metallurgy into southern Africa have been introduced. One referring to that the Iron Age in southern Africa was established as a “cultural package” also containing a new settlement pattern as well as a cattle and crop based economy. This “cultural package” was, according to this theory, introduced by a Bantu-speaking people, arriving in southern Africa, some 2000 years ago. According to the archaeologists, supporting this idea, the main evidence for this theory is that it has been suggested to be an immediate border between the Stone Age and Iron Age objects in the archaeological stratigraphy. The rapid disappearance of a material culture in favour of another material culture does suggest that one might be facing the replacement of one culture with another one. This, however, is a quite old-fashioned way of thinking. The idea that one culture has to be replaced by another one, and that the previous culture can not continue once the new ideas have been introduced, I would say is an idea that belongs in evolutionary theory, not in modern. Although there are surely cases of replacement of cultures to be found, one cannot propose it to be a norm.

The second theory concerns the spread of ideas rather than people. According to this theory, metallurgy was spread as an idea to the south of Africa. It also suggests that the various elements of the “cultural package” mentioned above were separate ideas, spreading in separate ways. Iron Age did not immigrate into the south according to this idea. Instead it spread through interaction between peoples. Despite the fact that ideas generally travel faster than people, the archaeological material would not experience the same immediate border in the archaeological material that would occur had a new people replaced a prior culture.

The later theory is a more recent one, though both of these ideas are argued for by different archaeologists today, and have conquered an audience of quite similar size, however, the theory concerning the spread of ideas is winning ground, as the earlier theory suggesting that the introduction of metallurgy was a result of the immigration of a new people is being questioned.

In my study regarding the site of Bambandyanalo in the extreme north of South Africa, I believe I cannot find any evidence suggesting that there would be a direct border between Stone Age artefacts and Iron Age artefacts in the stratigraphy. As one would assume, as the site of Bambandyanalo was one of the first sites in the area
to be introduced to metallurgy, the metal remains as well as artefacts associated with complex cultures become increasingly frequent the higher up you get in the stratigraphy. But one can also see quite clearly that stone objects as well as rougher-type pottery are well represented on all levels. I would therefore suggest that the idea that the prior Stone Age culture was completely replaced by a later Iron Age one is unlikely.

This, however, does not necessarily mean that the second theory regarding the introduction of metallurgy is true in this case. It is impossible to say, only through a stratigraphic study, whether it is a matter of the spreading of the idea of metallurgy or whether it is a matter of Stone Age and Iron Age cultures living side by side at the same settlement.

In ethnographical research, as well as archaeological, the close relationships as well as interactions between various peoples in this geographical area have been studied, showing that the previous idea suggesting that the various peoples of this area was isolated from one another is false. At current settlements Bantu as well as Khoesan peoples live side by side, and I cannot see how that could not also be the case in these past societies.

The main result of this study is that it questions the theory that the Stone Age culture present at the Bambandyanalo site disappeared or was replaced by migrating iron using peoples. The study cannot fully confirm the recent theory stressing the spread of ideas, however, it is a step away from the previous evolutionary way of thinking when it comes to archaeology in southern Africa, and towards a more integrative and dynamic view upon the peoples of Bambandyanalo.
7. SUMMARY

Sub-Saharan African archaeology is most famous for the Great Zimbabwe culture. The city of Great Zimbabwe that was the main seat of this culture is still the largest masonry structure except for the Egyptian pyramids, in Africa. The Great Zimbabwe culture was an Iron Age culture that based its economy largely on trade, and was part of a trading network that stretched as far as China in the east, Europe in the north and had frequent contacts with other areas such as the Arabian Peninsula and India. The Zimbabwe culture was not the first Iron Age culture that conducted trade in the area though. It was preceded by several Iron Age cultures around southern Africa, but the one that is considered being the most influential on the Zimbabwe culture was that of Mapungubwe in South Africa.

Over the years, archaeologists have discussed the introduction of metallurgy in southern Africa. It was along with the introduction of metallurgy that these larger settlements and later civilisations became apparent. As migration have always been a focal point of study in this part of the world, the first main theory presented suggested that the introduction of metallurgy was launched as a “cultural package” including a new settlement pattern as well as a new type of economy. According to this theory the “cultural package” was brought into southern Africa by a Bantu-speaking people. More recent research, however, argues against this idea. According to some archaeologists, the introduction of metallurgy did not occur in the shape of a “cultural package” instead it was introduced as an idea, and not through the immigration of a new people.

The introduction of Iron Age as a “cultural package” suggests that the settlements would have been taken over by these new Bantu-speaking people, or that they would have created new settlements of their own. One can therefore quite easily disprove this theory by looking at the stratigraphic distribution of artefacts. If a settlement becomes taken over by a new people there would be an immediate border in the archaeological material in the stratigraphy between the two cultures. Artefacts belonging to the previous culture should not occur in the level of the new culture.

In my study concerning the introduction of metallurgy at the site of the Mapungubwe civilisation, I have focused on the earliest of the living areas of the settlement, that of Bambandyanalo, as it would be here that one would be able to see the transition into Iron Age in the stratigraphy.

In my study I looked at archaeological remains mainly associated with the Stone Age and compared their stratigraphical distribution in comparison to archaeological material mainly associated with the Iron Age. In my analysis I came to the conclusion that I could find no immediate border between the artefacts representing the two categories. Stone tools as well as rough pottery was rather equally distributed throughout the stratigraphy and suffered no decline as metal objects were introduced.

These results does not, however, prove that metallurgy was introduced through ideas at the site of Bambandyanalo, it could also suggest that a culture using a more primitive type of material culture lived side by side to a culture using Iron Age
artefacts. Having a new technique close at hand does not necessarily mean that a culture convert to it.

I do believe I can quite confidently suggest that a new culture did not take over and replace previous cultures at Bambandyanalo though, as no proof of any border showing various cultures on the different sides of it, have been found.

The idea of cultures replacing each other and that older more primitive cultures eventually become increasingly developed is an evolutionary idea that was current a century ago. There are surely cases of cultures replacing each other in history but I would say that this was not the case with Bambandyanalo.
REFERENCES

Henneberg, M., 1994. *Preliminary report on the paleodemography of the K2 and Mapungubwe populations (South Africa)*

Manyanga, M., 2006. *Resilient Landscapes - Socio-environmental dynamics in the Shashi-Limpopo Basin, southern Zimbabwe c. AD 800 to the present*. Uppsala

Block 4: Bambandyanalo

Block 5, Bambandyanalo

Explanations:

- ❑ Pottery
- ⮞ Stone objects
-烩 Metal
- ❆ Bone/Ivory
- □ Figurines
- ○ Beads

35